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ABSTRACT

This report documents the performance characteristics of a TRAC (Targeting

Reflective Alignment Concept) sensor. The performance will be documented for both

short and long ranges. For long ranges, the sensor is used without the flat mirror

attached to the target.

To better understand the capabilities of TRAC based sensors, an engineering

model is required. The model can be used to better design the system for a particular

application. This is necessary because there are many interrelated design variables in

the TRAC system. These include lense parameters, camera, and target configuration.

The report presents first an analytical development of the performance, and second

an experimental verification of the equations. In the analytical presentation it is

assumed that the best vision resolution is a single pixel element. The experimental

results suggest however that the resolution is better than 1 pixel. Hence the analytical
results should be considered worst case conditions.

The report also discusses advantages and limitations of the TRAC sensor in light

of the performance estimates. Finally the report discusses potential improvements.

SCOPE AND OBJECTIVES

This report documents a small portion of the TRAC related projects performed

by the PI's and is the first in a series of reports. Copies of all reports will be forwarded

to L. Monford, and R. Berka, both of NASA JSC.

The TRAC targeting system was automated using image processing hardware,

a PC and a PUMA. The automation system, software and hardware, will be docu-

mented in a report submitted in the near future and in a master's thesis by Mike

Bradham.

The automated TRAC (because of the relatively slow video rates) could not be

used for servo control of the robot. Therefore on velocity driven robots (as in our case

and the MDF) it was necessary to design a position control. Several control methods

were used and tested. These algorithms will be discussed in a master's thesis by Jeff

Pafford.

The automated TRAC was implemented on the MDF during the summer of 1991.

One problem confronted during the implementation was to determine the robot's

dynamic response. An estimate of the robot's response was determined from in-

put/output data and will be documented in a master's thesis by Ravishankar Sreekan-

tappa.

In addition to these theses and reports, several papers have been and will continue

to be submitted for publication. When these papers are accepted for publication,

copies will be forwarded to NASA.
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Figure 1: Definition of Errors.

Target Vehicle I

Figure 2: Active Beacon Target for Long Range Operations.

TRAC SENSOR OPERATION

The sensing system studied and reported on is an autonomous version of the

Tracking and Reflective Alignment Sensor (TRAC) [1]. Figure 1 shows the definitions

of the target bearing, range, roll, pitch (yaw is similar). Not shown in the figure are

transverse deviations. These deviations are the two translations perpendicular to the

range.

The TRAC sensing concept has two distinct operating modes, one for short range

operations and the other for longer ranges. This report will discuss the performance
of both modes.

Long Range Operations

At large ranges, range and bearing sensing is most critical. Figure 2 shows a target
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Figure 3: Using Retroreflectors with TRAC to Produce Beacons.

with three arrays of very bright LEDs mounted at a target radius. These beacons are

flashed on and off at approximately the frame rate. The centroid of these beacons

in the image allow the bearing angles (or alternatively the transverse displacement)

to be computed. The perimeter formed by the beacons determine the range. The

orientation of the target is determined by a perspective transformation using the

three beacons. The ambiguity arising from using three rather than four points in the

transformation is not resolved with just the three bright targets.

In long range applications, the TRAC system determines an object pose as any
conventional vision based sensor.

Short Range Operations

When the target is at a small range 1 the targeting concept can implement a

conventional TRAC algorithm. The TRAC algorithm uses a flat mirror and three

retroreflectors mounted on a target. For our work the retroreflectors are mounted in

a triangular pattern where one leg is significantly shorter than the other two.

Lighting for the TRAC sensor (the camera) is mounted on the camera itself. In

some applications, the illumination is in the dead center of the lense, on others it is

on the edge of the lense. The light illuminates the flat mirror and the reflectors.

The reflector image is used with an algorithm similar to that used with the beacons

to determine range, bearing, and roll. Figure 3 shows how this is accomplished.

Because the retro reflectors bounce light back in the direction it came from, their

location on the image plane is independent of the orientation of the target. At least

to the extent that target rotation does not affect the position of the retros. Of course

if the retros were on the tip of a post, their position would be more of a function of

target orientation.

The image produced by the flat mirror is used to determine yaw and pitch. Fig-

ure 4 shows how this is done. The software algorithm will not be explained here, the

interested reader should consult [2].

1Exactly what small means depends on the capture angle of the TRAC mirror, the uncertainty in

the target location and the maneuverability of the chase vehicle (or robot).
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Figure 5: The Essence of the Filtering Technique Used.

Vision Robustness

One very serious problem with any autonomous sensing system is robustness to

extraneous sensations. In the case of a vision system, we need to be robust to back-

ground lighting, changes in illumination, occlusion and the like. We chose to use

structured lighting as the solution to robustness.

Noise rejection is obtained by time domain sampling the image thus blacking all

pixels which do not blink at the known rate of our source lights. Essentially, this is

a filtering (or sampling) method. To reduce computational overhead, the lights are

blinked to enable a simple filter arrangement to operate. Figure 5 shows a TRAC

target illuminated by a source on the camera. The image contains a background, a

flat mirror and three retroreflectors. Two images (for example) are taken in sequence

and subtracted to determine the gradient of intensity for each pixel. Only the pixels

that change produce bright spots in the image.
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Figure 6: "Filter" Algorithm for Reducing Background Light Effects.

Of course, motion also produces a gradient and therefore one would expect some of

the background to make it into the image. To reduce this effect, the second derivative

(change of the gradient) could be computed. Figure 6 shows how the algorithm could

be implemented for beacons, a similar procedure could be used for the short range

TRAC. Once the camera synchronizes with the beacons, we have images as shown in

the first row. For simplicity the figure does not show background. If we have control

over the beacons, obtaining the images in the top row is possible. Next we subtract

successive images to obtain images in the second row. Since this is simply a gradient,

there will of course be some background due to, for example, motion. At this stage,

pixel amplitude can be positive, negative or zero. Most of the background will be close

to zero. Images in the third row are determined by subtracting consecutive images

in the second row. Essentially this is the second differential of the pixels. As you can

see in the third row images, certain beacons have become accentuated because they

were illuminated then dimmed at specific times. Now it is true that some background

could become accentuated as well, provided it increases and decreases its brilliance

at the correct time, however the probability of that is expected to be small. After the

second differential has been taken, the pixels will be thresholded at a level determined

by the maximum brilliance. What is expected in the image is either all, none or one

beacon (we will know which).

The intensity of background lighting could be reduced further by using an inter-

ference optical filter which passes only the light color emitted by our relatively single

color, blinking illumination source. In our applications we never had the need for
these filters.

NOMENCLATURE

This section introduces some basic nomenclature used throughout the report.

1. Nearest Distance in Focus - d, - A lense will have a range of distances to objects

which are in sharp focus. This is the minimum of these distances. It is measured
from the center of the lense.
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Figure 7: Definition of the View Angle.

2. Farthest Distance in Focus - df - See Nearest Distance in Focus. This is the
maximum distance in focus.

3. Distance Focused On - dfocu, - Depending on the location of the image plane,

there is a range (measured from the lense center) at which the focus is perfect.

4. View Angle - O - This is twice the maximum angle measured from the optical

axis at which light rays will hit the image plane. Figure 7 shows its definition.

5. View Angle at Focus - 8 - This is twice the maximum angle measured from the

optical axis at which light rays will hit the image plane. It differs from O in

that the image plane is at the focus distance.

6. Focal Length - f - One of the two independent variables in a lense. The distance

measured from the lense center at which parallel light rays intersect at a point.

It is the distance to place the image plane to focus on an object at infinity.

7. Distance to Image Plane - fi - The distance measured from the lense center to

the location of the image plane.

8. F Stop - F8 - One of the two independent variables in a lense. It is a dimen-

sionless ratio of the focal length over the lense diameter. It is a unitless way

of describing how much light can enter the lense. The smaller the number the

more light can enter. In a sense, all lenses with a given F Stop allow the same

amount of light intensity to enter.

9. Pixel Size - xoo - The real size of an object when the image plane is at the focal
length.

10. Pixel Size at Focus - x! - The real size of a focused object which exactly covers

one pixel.

11. Format Edge Length - l_ - The length along one edge of the image plane.
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12. Circle of Confusion- Ic - When light from a single source enters the lense, it

is bent into a cone like arrangement. If the image is not perfectly focused on

the image plane, the light rays form a circular like shape. The largest diameter

circle which still looks like a single point is the circle of confusion.

13. Range to Object - d - The distance measured from the lense center to an object.

14. Number of Pixel Rows - np - The number of rows of pixels in the image plane.

15. Pixel - p - A distance measured in the image plane. It is a discrete number with

units of "pixels'.

16. Diameter of Target - Dt - The diameter of a target.

17. Sampling Period - 7" - The time between samples of images.

18. Bearing - 3' - The angle between a line drawn from the lense center to an object

and the optical axis.

19. Perimeter - Dp - The perimeter of the target.

20. Transverse Position - y - A distance perpendicular to the optical axis.

VIDEO EQUIPMENT

This section presents a summary of the basic equations for choosing lenses, camera

resolutions and the like. All of these equations are straightforward and can be found

in most texts on photography. They are included only to assist those inexperienced
in the area.

Lenses

There are two free parameters in a simple lense, the diameter and the focal length.

The focal length (f) is the distance from the center of the lense to the point of focus

of an object located infinitely in front of the lense. The Fstop (F,) is a dimensionless

ratio of the focal length over the lense diameter. Once these parameters are specified,

the lense is unique. In our calculations however there are several other quantities

which make the calculations simpler.

Basic Vision System Specifications. There are a set of basic specifications for

the vision system which can be used more effectively to choose a lense. Somewhat

arbitrary (but realistic) values of these parameters are shown in Table 12 . These

numbers are used in the performance equations whenever a numerical example is



Parameter Value

SmallestRangeto Focuson
Greatest Rangeto Focuson
Desired Fstop Value
Diagonal Format Length
Number of Pixel Rows
Circle of Confusion
Focal Length (Experimental Hardware)
Radius of BeaconTarget
Radius of ReflectorTarget
TRAC Mirror EdgeLength

5.4 feet
13.5feet
3.8
0.5 inch
512
1 Pixel
19 mm
1 foot
20 mm
1 foot

Table 1: BasicVision System Parameters.

given. In actuality, all calculations were relatively insensitive to the greatest range
parameter for distances greater than 100 feet. The desired Fstop value for orbit
operations was estimated to be about 22 (after experimenting with a camera and
target system in bright daylight), however3.8 is used in the calculations becauseit
matchesour experimental equipment. The format length was chosenbasedon the
fact that a typical half inch format hasagood signalto noiseratio [3] (it just happens
to match our hardware). The number of pixelsmatchesour hardware.

Notice that we are specifying three quantities to define the lensesystem. These
are: the Fstop, the closest focuseddistance and the greatest focuseddistance. To
satisfy thesethreespecificationswith our lense,wemust selectthe focal length, Fstop
and the point of focus (eg. whereto placethe imageplane). To do this, we establish
a relation betweenthe specificationsand the distance to a sharply focused object.

Figure 8 helps with the derivation. The point of focus in each case shown is found by

determining the intersection of the lines on the image plane. The intersection point

fi can be expressed in terms of the range droc,8 as:

1
fi "- 1 1

! _.¢u

As shown in part (d) of Figure 8, the near and far focus ranges can be determined by

equating the separation distance (measured on the image plane) between light rays

2Actually the smallest and greatest range to focus on along with the Fstop axe more convenient to

specify when you axe selecting from a large assortment of lenses therefore the analysis is written

in terms of these values. From these, the focal length and position of the image plane can be

computed as is done in the analysis. However, during the experimental investigations, we were

forced to use a lense which was available, therefore the focal length was fixed. The values shown
in Table 1 were selected to match our experimental lense
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Figure 8: A Simple Lens Focused On (a) An Object At Infinity, (b) An Object Close

In, (c) An Object Far Away, and (d) An Object At An Arbitrary Distance.
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originating from the object the circle of confusion. For an object at d range and an

image plane at fi the separation distance (s) is (using the definition of Fstop):

S ---

- (d f) + d fi - f fi

2dF,

Equating +2s to the circle of confusion, we solve for d which is the near and far

ranges in focus. These are:

-1.fA
d. = (1)

f - l. fi- l.l,:F.

and:

IA
df = (2)

-1.f + fi- l.lcF,

Now equations 1 and 2 are convenient if one has a given lens (Fs and f are given)

however for the selection of the lens it is better to invert these to solve for f and fi.

These inversions provide the following:

__

and:

lc Fo(df+dn) V_v'_, _//ledc_ F.+Sdf2 d.+21¢df F. d,-8d4d.2+l_F.d. 2

fi -- dr-d_ q" -_+dn (3)

2

As expected, the focal length increases with the average distance in focus and de-

creases with the depth of field.

View Angles

The view angle can be computed based on the focal length and the format length.

Figure 7 shows the definition of the view angle. The angle shown is the angle when

the lense is focused at infinity. It is computed as:

If If

O = 2 tan-1 (_7) = 2 tan-l(_7)

The view angle at focus 0 can be computed similarly when the distance to the image

plane is known as:

If )0 = 2 tan -1 (_
k2 _i

10



Location of Focused Object

When focused at infinity, the image plane will be located at the focal length.

When the lense is focused at some other point (the point of focus) the image plane

will be located at fi given in equation 3.

POSE CALCULATIONS AND RESOLUTION

Rate Determination

The rate of change of a signal is determined by differencing successive values. For

example, if Si is the signal at sample period i, then the derivative is approximately:

Si-Si-1

,5

Hence the error in the derivative calculation (due to measurement error) is a function

of the signal error and the time error. We assume we have a very precise time

measurement, therefore our derivative signal error is:

2&S
AS

6

With the sampling time set to 0.1 seconds (three frames), the velocity error is 20

times the signal error.

Pixel Sizes

When determining the position of a feature on the image plane, the camera mea-

sures position in pixels. A simple relationship can be determined which gives the

actual size of a pixel. This relationship depends on where the image plane is and the

range to the object. The pixel size when the image plane is at the point of focus is:

dlf

X f fi np

One pixel is what we assume is the smallest change in target position which can be

measured. This of course assumes we cannot perform subpixel accuracy calculations.

Figure 9 shows the relationship between the pixel size and range for the specifications

given earlier. Figure 10 shows the relationship of pixel size to the Fstop. Figure 11

shows the relationship between the focus distance (indirectly the image plane position)

and pixel size is immaterial at distances above 50 meters.

The term pixel size means the actual height of an object which fills up one pixel

height on the image plane.

11
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Figure 9: Focused Pixel Size versus Range.
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Figure 11" Pixel Size at 100 Meter Range versus Focus Distance for Fstop = 22.

Figure 12: Relation Between Location on Image Plane and Lateral Position (Can

Also Be Used to Derive Pixel Size).
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Figure 14: Maximum Translation Before Losing a Beacon.

Performance at Long Ranges

Transverse Position The transverse position of an object can be computed from

its image plane location using similar triangles as shown in figure 12 as:

pd

Y=fi

One concern is the maximum deviation from center which can be tolerated before

one or more target beacons/retros leaves the field of view. This distance is shown as

Yma_ in Figure 13. and can be computed as:

Y,n_= = d tan(0) - r

Figure 14 shows this value versus range. Of particular interest is the point when this

becomes zero. At this point, it is impossible to keep all beacons in the field of view.

For the specifications (1 foot beacon radius), this occurs at a range of 4.3 inches. For

the reflectors (20 mm radius) it is 0.3 inches.

Bearing Angle
as:

The pixel size can be used to approximate bearing angle resolution

= tan- 1/9
/i

13
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Figure 16: Bearing Error versus Focus Distance for Fstop = 22.

Notice the bearing angle resolution, and hence its rate is constant with respect to the

range. For the specifications, the bearing error is 0.0523396 ° . Figure 15 shows the

relation between bearing error and the Fstop. Figure 16 shows the effect of the focus

distance on the bearing resolution.

Range Resolution Range is computed by comparing the separation distance be-

tween the beacons/reflectors. Using such an algorithm means change in range can

only be detected when the separation distance changes. We computed range resolu-

tion as the change in range required to produce a distinguishable change in separation.

More specifically, we computed the change in range given a change in separation dis-

tance (a numerical derivative). Figure 17 For the calculations, we assumed the target

is close to centered in the field of view. Based on the specifications, the change in

range for a unit change in separation distance is shown in figure 18.

In the software, range was determined using a calibration. The range to perimeter

size was empirically determined. The relation between the distance to the target and

the perceived perimeter size is an offset hyperbola defined by:

a

d= -_+b

At large distances, the perimeter does not change much with distance. At small

ranges, the change in perimeter is tremendous. If fact, before the camera lens touches

14
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Figure 18: Range Error versus Range.

the mirror (d = 0), the entire pattern will no longer be in the camera's view. This

relation quickly brings to mind an inverse relationship between the variables. The

offset b is necessary because the range is measured from a distance in front of the lens

rather than in the middle as theoretically defined. The data shown in Table 2 shows

experimental values for range and perimeter. This data was fit to an offset hyperbola

where, a = 149348.9 mm - pixel and b -- -14.55 mm. Figure 19 shows the calculated

values (as a line) along with the measurements (as symbols).

Attitude Resolution Attitude is determined using an inverse projection transfor-

mation. We computed the yaw and pitch attitude error as the smallest change in

Figure 19: Experimental Range Versus Perimeter.
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Perimeter Range
pixels mm

190 769.5
212 688
234 620
256 570
280 520
308 472.5
312 468
345 419.3
390 369.5
447 320
526 268.5
639 218

Table 2: Experimental Rangeand Perimeter Sizesfor the Cameraand Target Used
At A&M.

attitude that causedthe separation distancebetweentwo beacons/reflectors(at the
samerange) to appear to change. Figure 20 showsthe smallest yaw and/or pitch
required to producea visible changein the image.

The roll wasdeterminedby determiningthe minimum anglewhich causesareflec-
tor to move from one pixel to another. The calculation equatesthe arc length swept
by a reflectorduring a roll to the pixel size. The roll resolution is shownin Figure 21.

35

25

¢'_20
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"i_lq

-
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Range inFeet
2O

Figure 20: Smallest Recognizable Yaw (or Pitch) Angle Producing Noticeable Change

in Image (NonTRAC).
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Figure 22: Smallest Recognizable Roll Angle Using Retroreflectors.

Performance at Short Ranges

When in close, the sensing algorithm switches from beacon following into a TRAC

system. Determining the transverse position, bearing, range and roll from the TRAC

system is identical to that used for long ranges except the beacons axe replaced with
retroreflections. Numerical differences in the roll resolutions occur because the reflec-

tom have a different configuration (in this study) than the beacons. Based on our

specifications, Figure 22 shows the values for the trac system. Since the range calcu-

lation depends on the change in perimeter, not in the size of the perimeter, the range

resolution is the same for beacons as it is for the reflectors. However, the calibration

for the range to pixel conversion is a function of the target.

Attitude Resolution for TRAC Figure 4 demonstrates how TRAC determines

the yaw and pitch of the target. It is clear from the diagram that it is equivalent to

the calculation of a bearing angle, hence the resolution is independent of the range.

For the specifications, the smallest angle measurable by TRAC is 0.0523431 degrees.

The maximum angle measurable by TRAC depends predominately on the size of the

mirror. Essentially, the reflected image "runs out" the mirror until it falls off the

edge. The maximum measurable angle is shown in Figure 23.

17
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Figure 23: The Maximum Yaw and/or Pitch Angle Measurable by our TRAC.

EXPERIMENTAL EVALUATION

To determine the pitch and yaw resolution, a rotary positioning stage with an

accuracy of 0.01 ° was used to aim the camera at the mirror. The experiment was
started with the camera close to normal to the mirror. The camera is then rotated in

increments of 0.01 ° and the pixel changes were recorded. A plot of this data should

have a "stair-step" character as the LED in the picture moves between pixels. The

experiments were conducted at 2 through 20 feet range.

To measure the horizontal, vertical, and range resolution, the mirror is mounted on

a coordinate measuring machine (CMM) that has a resolution of approximately 0.01

mm. This time the CMM moved the mirror and recorded its position while the pixel

locations were recorded. Since the range measurement is based on the perimeter of the

three retro-reflectors, the resolution of this measurement is dependent on the retro-

reflector configuration. This test used an isosceles triangle with an actual perimeter

of 109 mm. With this system, 5 feet was the maximum range that reliable results
were attained do to the amount of illumination available.

Several images were taken at each point and, averaged together. Occasionally, the

system would take a bad image but these were discarded.

Experimental Results

The figures which follow show the results. The results indicate that, as predicted

in the analysis, angular resolution does not change with range. Figures 24 and 25

show that sub-pixel resolution is possible. The system used for these experiments had

a resolution of 1/3 of a pixel. Because the position of all three retro-reflectors were

averaged to determine the lateral movements, it is understandable that the accuracy

should be 1/3 pixel. The figures also show that the position of the retro-reflectors

tended to shift at about the same time so that the plot has a poorly defined stair step
character.

Figures 24 and 25 show that the lateral resolution at 2 feet was about 0.5 mm/pixel.

Which compares to 0.556869 mm/pixel as predicted via the theory. The lateral reso-

lution (Figures 26 and 27) for the system at 5 feet was about 1.2 mm/pixel (compare

this to 1.39217 mm/pixel as predicted via theory).

18
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I HORIZONTAL RESOL_ION AT 5 FE_:

Figure 26:
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Figure 28:

The range measurementcan have sub-pixel resolution becauseit usesthe three
retro-reflectors to measurean apparent perimeter of the triangle. Figure 28 shows
that the resolution at 2 feet was about 1.8 mm/pixel (compared to 0.197877by
theory). The rangeresolution at 5 feet wasabout 19mm/pixel (comparedto 1.23304
by theory). The range resolution is very sensitive to the range. The perimeter is
approximately 250 pixels in Figure 28 and about 80 pixels in Figure 29.

The pitch and yaw resolution will not havesub-pixel resolution becauseit mea-
sures the location of the LED reflection only. The angle resolution, determined by
Figures 30and 31, wasabout 0.045degreesat 2 feet (comparedto 0.0523431degrees
by theory). The transitions weremoredefinedat 2 feet than at the greater distances.
The pitch and yaw resolution at 5 feet is determined from Figures 32 and 33. Fig-
ures34 through 35areangle measurementsat 10through 20 feet. The resolution for
thesemovements,aswell as the anglemovementsfor the closerrangesare all about
the same(theory predicted them to be independentof range).

The roll resolution at 2 feet wasdetermineddifferently sinceactual anglechanges
are calculated by TRAC rather than pixel changes.Consequently,the experimental
points in Figure 36 should fall on a line with slope 1. To measurethe resolution,
the calculated angle changefor each measured(input by the rotation stage) angle
changewasaveragedover the 3° total movement. The vision system averaged about

a 0.08 ° resolution. It is hard to find a good number for the roll resolution at this

range because the resolution is of the same order of magnitude as the repeatability

of the rotational stage. Figure 37 shows that this isn't true at a range of 5 feet. The

resolution at 5 feet is about 1.56 ° (compared to 1.99454 ° from theory 3) which shows

3For this calculation, the reflector radius was taken to be 40 mm which compares closer to the
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Figure 29:

Figure 30:
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Figure 31:

I PITCH RESOLUTION AT 5 FE_

Figure 32:
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Figure 33:

Figure 34:
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YAW RESOL_ION AT _0 _

Figure 35:

: ROLL RESOL_ION AT 2 FE_. ::,:::[

Figure 36:
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Figure 37:
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Figure 38: A Proposed Method for Improving the Field of View of a TRAC Sensor.

that roll measurement is very dependent on range as we predicted.

CONCLUSIONS

The chief limitation of the the TRAC sensor is its restricted "field of view". When

using the TRAC based sensor, the maximum yaw and pitch deviation is set by the

physical size of the target mirror. Essentially the reflection "walks" out the mirror

until it falls off. The field of view may be relaxed by using a slightly curved mirror,

but this is significantly reduces the illumination returned by the target. Figure 38

When the orientation of the mirror changes, the incident light rays strike at different

angles. This causes the apparent location of the reflector to change and hence can be
related to orientation.

value used in the software algorithm.
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Figure 39: A Beam Splitter Used in Illumination.

Another weakness is when the sensor is used without the TRAC mirror. In this

mode, the orientation resolutions are bad. This situation can be improved significantly

by elevating one of the reflectors/beacons out of plane.

Another system problem is distinguishing the LED image from the retros. An easy
method to handle this problem is to locate the retros on the outside of the mirror.

This way, the LED image will always appear inside the retros. The problem of course

is that either the TRAC mirror is small or one runs the risk of "losing sight" of the

retros at close range.

Another difficulty is obtaining sufficient illumination. The retros do not return

much of the light (due to their spreading effects and their size). Perhaps using very

bright illumination sources (even strobes in the worst case) implemented either di-

rectly mounted on the lense, or at the side of a lense through a beam splitter as shown
in figure 39.

One of the significant benefits of the TRAC system is that it has an excellent

pitch and yaw resolution. In addition, this resolution is independent of range. In the

proper application, these two advantages can prove to be very important.

27



REFERENCES

[1] L. Monford, "Docking alignment system," U. S. Patent No. 4890918, NASA JSC
Case No. MSC 21372-1.

[2] R. Redfield, L. J. Everett, M. Bradham, and J. Patford, "Autonomous TRAC,"

Final Report for NASA Grant NAG3-96, Texas A&M University, Mechanical

Engineering Department, College Station, TX 77843-3123, December 1991.

[3] Solid-State Imaging Devices, Tech Note No. TIOOZ Vicon Industries Inc., 525

Broad Hollow Road, Melville, Ny 11747-3703, August 1988.

28




